On the Structure of 3-connected Matroids and Graphs

نویسندگان

  • James G. Oxley
  • Haidong Wu
چکیده

An element e of a 3-connected matroid M is essential if neither the deletion M\e nor the contraction M/e is 3-connected. Tutte’s Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. In this paper, we consider those 3-connected matroids that have some non-essential elements, showing that every such matroid M must have at least two such elements. We prove that the essential elements of M can be partitioned into classes where two elements are in the same class if M has a fan, a maximal partial wheel, containing both. We also prove that if an essential element e of M is in more than one fan, then that fan has three or five elements; in the latter case, e is in exactly three fans. Moreover, we show that if M has a fan with 2k or 2k + 1 elements for some k ≥ 2, then M can be obtained by sticking together a (k + 1)-spoked wheel and a certain 3-connected minor of M . The results proved here will be used elsewhere to completely determine all 3-connected matroids with exactly two non-essential elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural properties of fuzzy graphs

Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study  connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids  from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Matroids and Graphs with Few Non-Essential Elements

An essential element of a 3–connected matroid M is one for which neither the deletion nor the contraction is 3–connected. Tutte’s Wheels and Whirls Theorem proves that the only 3–connected matroids in which every element is essential are the wheels and whirls. In an earlier paper, the authors showed that a 3–connected matroid with at least one non-essential element has at least two such element...

متن کامل

Unavoidable minors of large 4 - connected

11 It is known that any 3-connected matroid that is large enough is certain to contain 12 a minor of a given size belonging one of a few special classes of matroids. This 13 paper proves a similar unavoidable minor result for large 4-connected bicircular 14 matroids. The main result follows from establishing the list of unavoidable minors 15 of large 4-biconnected graphs, which are the graphs r...

متن کامل

On Connectivity in Matroids and Graphs

In this paper we derive several results for connected matroids and use these to obtain new results for 2-connected graphs. In particular, we generalize work of Murty and Seymour on the number of two-element cocircuits in a minimally connected matroid, and work of Dirac, Plummer and Mader on the number of vertices of degree two in a minimally 2-connected graph. We also solve a problem of Murty b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2000